DNA origami templated self-assembly of discrete length single wall carbon nanotubes.

نویسندگان

  • Zhao Zhao
  • Yan Liu
  • Hao Yan
چکیده

Constructing intricate geometric arrangements of components is one of the central challenges of nanotechnology. Here we report a convenient, versatile method to organize discrete length single-walled carbon nanotubes (SWNT) into complex geometries using 2D DNA origami structures. First, a size exclusion HPLC purification protocol was used to isolate uniform length, SWNTs labelled with single stranded DNA (ssDNA). The nanotube-bound ssDNAs are composed of two domains: a SWNT binding domain and a linker binding domain. Although initially bound to the SWNTs, the linker domain is displaced from the surface by the addition of an external ssDNA linker strand. One portion of the linker strand is designed to form a double helix with the linker binding domain, compelling the DNA to project away from the SWNT surface. The remainder of the linker strand contains an ssDNA origami recognition sequence available for hybridization to a DNA origami nanostructure. Two different 2D DNA origami structures, a triangle and a rectangle, were used to organize the nanotubes. Several arrangements of nanotubes were constructed, with defined tube lengths and inter-tube angles. The uniform tube lengths and positional precision that this method affords may have applications in electronic device fabrication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates.

A central challenge in nanotechnology is the parallel fabrication of complex geometries for nanodevices. Here we report a general method for arranging single-walled carbon nanotubes in two dimensions using DNA origami-a technique in which a long single strand of DNA is folded into a predetermined shape. We synthesize rectangular origami templates ( approximately 75 nm x 95 nm) that display two ...

متن کامل

DNA-templated carbon nanotube field-effect transistor.

The combination of their electronic properties and dimensions makes carbon nanotubes ideal building blocks for molecular electronics. However, the advancement of carbon nanotube-based electronics requires assembly strategies that allow their precise localization and interconnection. Using a scheme based on recognition between molecular building blocks, we report the realization of a self-assemb...

متن کامل

DNA origami: a history and current perspective.

Researchers have been using DNA for the rational design and construction of nanoscale objects for nearly 30 years. Recently, 'scaffolded DNA origami' has emerged as one of the most promising assembly techniques in DNA nanotechnology with a broad range of applications. In the past two years alone, DNA origami has been used to assemble water-soluble probe tiles for label-free RNA hybridization, t...

متن کامل

DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.

DNA nanotubes were created using molecular self-assembly of single-stranded DNA (ssDNA)-amphiphiles composed of a hydrophobic dialkyl tail and polycarbon spacer and a hydrophilic ssDNA headgroup. The nanotube structures were formed by bilayers of amphiphiles, with the hydrophobic components forming an inner layer that was shielded from the aqueous solvent by an outer layer of ssDNA. The nanotub...

متن کامل

Arrangement of palladium nanoparticles templated by supramolecular self-assembly of SDS wrapped on single-walled carbon nanotubes.

We report a facile route to selectively deposit and arrange palladium (Pd) nanoparticles on single-walled carbon nanotubes (SWCNTs) having sub 10 nm diameter by using supramolecular self-assembly of sodium dodecyl sulfate (SDS) as a soft template.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 11 4  شماره 

صفحات  -

تاریخ انتشار 2013